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1 Introduction

As automated transportation becomes increasingly prevalent in both air and ground mobility, en-
suring the reliability and safety of autonomous decisions made by artificial intelligence (AI) has become
paramount. Autonomous vehicles require sophisticated scenario navigation abilities for complex road
objects and tra�c participants, while autonomous aviation systems, particularly in the context of au-
tonomous landing, primarily rely on their runway detection systems under varying conditions. Specifi-
cally, one development focus of these AI systems is on their proficiency in handling critical scenarios –
rare occurrences that have the potential to cause system failures. As these events are rare in daily life,
automatic generation of critical test scenarios [1, 2] is of utmost importance to ensure maximum safety
in mobility.

In recent years, the combination of two fields, quantum computing (QC) and AI has given rise to
quantum machine learning (QML), which holds great potential for overcoming complex challenges that
were previously deemed unsolvable [3, 4, 5]. QML opens up exciting opportunities for autonomous ve-
hicles and aviation systems. Specifically, due to quantum computers’ ability to learn and sample from
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high-dimensional probability distributions [6, 7, 8], quantum generative models have demonstrated ei-
ther theoretical or empirical advantages over classical algorithms [9, 10, 11] in some cases and are thus
particularly promising. The task of critical test scenario generation thus serves as an ideal testing
ground for the application of QML in the automotive and aviation industries.

This problem statement focuses on the generation of synthetic images that encapsulate critical
scenarios in both autonomous vehicles and aviation systems domains. These critical scenarios en-
compass a wide range of challenging conditions, such as low visibility due to night-time conditions or
adverse weather[12], intricate tra�c patterns, and obstructions on runways. Therefore by establishing a
repository of images for critical low-visibility scenarios that mimic or replicate, for instance, nighttime
conditions, one can advance research in the perception algorithms for both automotive and aviation
domains. Thus it will enhance algorithms’ capabilities to navigate through dynamic real-world envi-
ronments. Therefore in this challenge, the focus would be on generating such a repository of critical
low-visibility nighttime scenario images by either, performing style transfers on high-visibility daytime
images to transform them into low-visibility nighttime images or using other approaches that perform
the same task.

2 Classical Generative Modelling Methods

Classical generative modelling methods, primarily rooted in deep learning and probabilistic mod-
eling, have demonstrated significant achievements in generating realistic images [13, 14]. However,
these methods exhibit certain limitations, such as slow sampling [15, 16] and security [17, 18] for dif-
fusion models, di�cult convergence for GANs [19, 20, 21] and image quality issue of VAEs [22, 23]
that motivate the use and exploration of quantum generative modelling approaches. There are various
classical generative modelling methods, that have gained relevance for good quality image generation.
The current state of the art in generative modelling for images is characterized by a diverse landscape
of techniques that have achieved remarkable milestones in generating realistic and high-quality visual
content.

Variational Autoencoder (VAE) [24, 25] is one of many popular probabilistic models used for
image generation and representation learning. VAEs learn a latent space representation of data and
allow for controlled image generation. However, VAEs often struggle with capturing complex data dis-
tributions due to their inherent assumption of simple Gaussian latent spaces. This limitation can result
in sometimes unrealistic image generation.

Generative Adversarial Network (GAN) [26, 27, 28], also gained popularity in image genera-
tion which has demonstrated the capability to produce visually convincing images through adversarial
training. GANs consist of a generator and a discriminator that play a two-player min-max game, leading
to the generation of high-quality images. Despite their impressive results, GANs are known to be very
di�cult to train and su↵er from issues such as mode collapse, where the generator on many occasions
tends to produce limited types of samples, and training instability.

Di↵usion Models (DM) [29, 30, 31, 16, 15] have also recently emerged as an e↵ective approach
to generate good quality images, o↵ering a unique perspective on image generation by focusing on the
process of iteratively transforming a simple distribution into a complex one. This enables them to o↵er
improved stability during training, making them less prone to issues like mode collapse or vanishing
gradients. But given the iterative approach of the method, di↵usion models also tend to be compu-
tationally more expensive and are occasionally prone to generating unrealistic images if the denoising
algorithm fails.

In conclusion, though classical generative modelling methods have made remarkable strides in im-
age generation, their limitations, however, motivate the exploration of quantum generative modelling.
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Leveraging the unique properties of quantum physics, complexity of Hilbert space and better data
representation, quantum generative modelling might have the potential to overcome some of the above
mentioned shortcomings of the classical methods and to accelerate the generation of better, high-quality,
diverse, and coherent images.

3 Quantum Generative Modelling Methods

In recent years, the field of quantum generative modeling has witnessed a surge in innovation,
with various algorithms and techniques making their way into the spotlight. Notable examples include
the Quantum Circuit Born Machine (QCBM)[32, 33], the Quantum Boltzmann Machine [34, 35], and
Quantum Generative Adversarial Networks (QGANs) [36, 37, 38]. These algorithms harness the unique
properties of quantum computing to generate data and probability distributions, o↵ering a fresh per-
spective on generative modeling in the quantum realm.

Generative adversarial networks employ an adversarial learning protocol mimicing the dynamics of
a two-player game where the players correspond to a parameterized generator and a parameterized
discriminator. QGANs harness the inherent principles of superposition and entanglement, potentially
leading to enhanced e�ciency in representing and sampling complex probability distributions. This
unique aspect of quantum information may also provide greater flexibility to both the generator and
discriminator, potentially allowing them to converge more e�ciently to the Nash equilibrium.

Notably, Loyds and Weedbrook [36] have demonstrated that in scenarios where the data is classical
and high-dimensional, and both the generator and discriminator are quantum, QGANs can potentially
achieve an exponential advantage over their classical counterparts. This result hints at the transfor-
mative potential of quantum generative modeling in scenarios where classical methods struggle to cope
with the complexities of high-dimensional classical data.

Despite the exciting advancements, the field of quantum generative modelling is still in the early
stages. While these quantum generative modeling techniques hold a lot of potential, it is necessary
to conduct more real-world tests and to better understand their capabilities and limitations. In this
context, it is of paramount importance to test di↵erent types of related quantum algorithms for specific
industrially relevant situations.

4 Case Study

For both vehicles and aviation systems, motion planning is more di�cult during the night compared
to during the day. In this task, we consider the images of critical test scenarios to be images of road and
runways during the night. We wish to generate the images by performing image-to-image translation,
meaning to translate images of a source domain (day) to the target domain (night).

The task should be solved under the unsupervised learning setting, meaning that images are not
provided in pairs, since obtaining paired data is typically di�cult and expensive. If the participants find
di�culty in constructing an unsupervised learning solution, they may alternatively perform supervised
learning with paired data constructed or found with extra resources, however at a cost of potential
missing score in the final evaluation.

We have two datasets, one for autonomous vehicles and the other for autonomous aviation systems.
For autonomous vehicles, we have an open dataset, the Berkeley DeepDrive dataset (BDD100K). 1

This dataset is widely used for image classification, detection, and segmentation tasks. It consists of

1
https://paperswithcode.com/dataset/bdd100k, https://arxiv.org/pdf/1805.04687.pdf
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⇠ 100, 000 images at 720p resolution, split into ⇠ 70, 000 training, ⇠ 10, 000 validation, and ⇠ 20, 000
test sets. The images are taken under di↵erent weather conditions, scenes and times of day, as shown
in tables 1 2 3.

clear overcast undefined snowy rainy partly cloudy foggy total
42690 10009 9276 6318 5808 5619 143 79863

Table 1: training and validation images divided by weather

city street highway residential parking lot undefined tunnel gas stations total
49628 19878 9327 426 414 156 34 79863

Table 2: training and validation images divided by scene

daytime night dawn/dusk undefined total
41986 31900 5805 172 79863

Table 3: training and validation images divided by time of day

For autonomous aviation (autonomous landing) system, we have an open dataset, Landing Approach
Runway Detection (LARD) 2 3. It consists of high-quality aerial images for the task of runway detec-
tion during approach (final preparatory step before landing) and landing phases. Most of the dataset is
composed of synthetic images produced with a virtual globe tool (Google Earth Studio), but also con-
tains manually labelled images from real landing footages. The training set includes synthetic images
of several specific runways regrouped by airports indicated in the filenames. The test set includes both
synthetic images as well as a specific archive for real images. In total there are around 15k real and
synthetic images of di↵erent sizes like, 2448×2648, 3840×2160 or 1920×1080 from multiple runways
and airports.

The participants are allowed to perform appropriate pre-processing of both datasets on their own.
The final submitted trained models should take images of the source domain, and/or random seeds
and/or additional tunable parameters to output images of the target domain. It is possible to add
parameters if deemed appropriate which are not part to the dataset, e.g., random numbers, additional
variables assigned to the output images.

5 Submission Guidelines and Key Performance Metrics

In this section, we o↵er participants precise directives that augment the general guidelines within
the framework of Quantum Generative Modelling. We also emphasize to follow the general submission
guidelines provided on the challenge website. The evaluation of the submitted approaches will be based
on the following Key Performance Metrics.

• The designed algorithm is expected to appropriately utilise quantum components at least on a
partial level. This may include quantum-hardware-dependent but also quantum inspired solutions.

• The motivation and (potential) advantage of the quantum solution shall be demonstrated in fair
comparison with classical state-of-the-art solutions.

2
https://arxiv.org/pdf/2304.09938.pdf, https://github.com/deel-ai/LARD

3
https://share.deel.ai/s/H4iLKRmLkdBWqSt?path=%2Flard%2F1.0.0

4



• The feasibility of the algorithm needs to be proven, so it needs to be formulated in a commonly
used language. Scripts / notebooks for testing on at least one of the datasets should be provided.
A classical simulation of the quantum components may be used. Emulation or usage of quantum
hardware may provide a more substantial proof feasibility but is not required.

• We are interested not only in the performance of the methods on the datasets, but also stud-
ies on the (speed) computational complexity of the algorithm, together with an analysis of the
requirements on the quantum resources and scalability.

• The quality of generated images should be evaluated by the submitter, based on the recommenda-
tions provided by domain experts from Airbus and BMW. By default, Fréchet Inception Distance
(FID) will be used. However, the participants may use alternative metrics if they favor the training
and evaluation of the algorithm (Need to justify the choice, and provide the code implementation
of the chosen metrics.)

• When developing industrial applications around generative modelling, usually the generated im-
ages need to be evaluated by human experts. Thus, domain experts at Airbus and BMW will
contribute to the evaluation of the generated images.

• Provide an assessment of how many training images are used and how long the training process
may take.

• Assess how well the algorithm generalizes to the data from both aerospace and automotive do-
mains.
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Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from di↵usion models,
2023.

6



[18] Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun. A com-
prehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt,
2023.

[19] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans, 2016.

[20] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On convergence and stability of
gans, 2017.

[21] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for GANs do
actually converge? In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 3481–3490. PMLR, 10–15 Jul 2018.

[22] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Adversarial variational bayes: Unifying
variational autoencoders and generative adversarial networks. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 2391–2400. PMLR, 06–11 Aug 2017.

[23] Ruoqi Wei, Cesar Garcia, Ahmed El-Sayed, Viyaleta Peterson, and Ausif Mahmood. Variations in
variational autoencoders - a comparative evaluation. IEEE Access, 8:153651–153670, 2020.

[24] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

[25] Carl Doersch. Tutorial on variational autoencoders, 2021.

[26] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

[27] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks, 2020.

[28] Chaoyue Wang, Chang Xu, Chaohui Wang, and Dacheng Tao. Perceptual adversarial networks
for image-to-image transformation. IEEE Transactions on Image Processing, 27(8):4066–4079, aug
2018.

[29] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pages 2256–2265. PMLR, 2015.

[30] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising di↵usion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

[31] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribu-
tion. Advances in neural information processing systems, 32, 2019.

[32] Jin-Guo Liu and Lei Wang. Di↵erentiable learning of quantum circuit born machines. Physical
Review A, 98(6), dec 2018.

[33] Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente Leyton-Ortega, Yunseong
Nam, and Alejandro Perdomo-Ortiz. A generative modeling approach for benchmarking and train-
ing shallow quantum circuits. npj Quantum Information, 5(1), may 2019.

[34] Mohammad H. Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, and Roger Melko.
Quantum boltzmann machine. Physical Review X, 8(2), may 2018.

[35] Feng Hu, Ban-Nan Wang, Ning Wang, and Chao Wang. Quantum machine learning with D-wave
quantum computer. Quantum Engineering, 1(2), June 2019.

7



[36] Seth Lloyd and Christian Weedbrook. Quantum generative adversarial learning. Physical Review
Letters, 121(4), jul 2018.

[37] Pierre-Luc Dallaire-Demers and Nathan Killoran. Quantum generative adversarial networks. Phys-
ical Review A, 98(1), jul 2018.
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