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1 Introduction

The drive towards sustainable production makes the need to minimize emissions in the supply chain a
priority concern. In particular, system integrators for mobility solutions like Airbus for aviation and
BMW Group for automotive rely on sophisticated supply chains for their highly complex products. One
key challenge for supply chain optimization is how best to distribute parts manufacture or assembly
amongst possible suppliers at di↵erent geographical locations so as to minimize the carbon dioxide
emissions and, hence, the environmental impacts that arise from transporting sub-assemblies or parts
between sites for further assembly into larger parts and ultimately the final product.

Today’s transport options include land (road or rail), sea or air or their combination. Each of these
options is associated with carbon dioxide emissions related to the nature (size and weight) of the part
and the transport’s start and end locations. In addition, there may be supplier constraints related, for
example, to its regional or national location, time for delivery, tari↵s, etc. Airbus and BMW Group
are committed to reducing their scope 1 (direct) carbon dioxide emissions and ensuring a reliable and
e�cient supply chain for their manufacturing processes.
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The objective of this problem statement is to evaluate quantum solutions for challenges in logistics
for the transportation industry. This will pave the way towards more e�cient and sustainable supply
chains and contribute to the future of transportation products in the aerospace and automotive sectors.
The following two sections briefly summarise some of the classical and possible quantum or quantum-
inspired approaches.

2 Classical Optimization

2.1 Integer linear programming

This logistics optimization problem can be formulated as an integer linear programming (ILP) problem
in which the unknowns are binary variables corresponding to the choice of a pair of origin and destination
sites for each transportation. The objective is the total transport cost of moving parts between sites.
ILP problems, in general, are known to be NP-hard and with binary variables as here constitute one of
Karp’s 21 NP-complete problems [1]. The canonical form of such problems for an n dimensional binary
vector x takes the form:

maximize cTx

subject to constraints Ax  b

with x 2 {0, 1}n

For the logistics problem, c is a vector of costs for moving parts between pairs of sites. Amongst the
constraints on the binary variables is the requirement that the destination site for sub-parts matches the
origin site for the resulting assembled parts and that origin and destination sites are always di↵erent.

The naive way to solve an ILP is simply to remove the constraint that x is binary or integer, solve
the corresponding linear problem (called the LP relaxation of the ILP), and then round the entries of
the solution to the LP relaxation. But not only may this solution not be optimal, it may not even be
feasible; that is, it may violate some constraints.

2.2 Heuristic approaches

For NP-hard problems such as this, exact solutions are typically not available at su�ciently large scales
because of the exponential growth of the solution space, and heuristic approaches are often adopted. One
heuristic approach to this problem (not guaranteed to find the optimal solution) is using evolutionary
algorithms [2]. In particular, genetic algorithms, [3], are the most popular type of evolutionary algorithm
and are often applied to combinatorial optimization problems. Another heuristic approach is the use
of answer set programming[4]. This is a form of declarative programming that is orientated towards
complex search problems such as this. Many other approaches can be found in the literature, but no
generally applicable method has been demonstrated so far for industrial-scale problems, and decisions
will often be based instead on expert judgment. Hence, there is a strong interest in both Airbus and
BMW in whether a quantum approach may provide a practical means of finding optimal or near-optimal
solutions for logistics problems such as this.

3 Quantum Optimization

The practical application of fault-tolerant algorithms for solving optimization problems awaits develop-
ments in technology, which may be more than a decade away. In the near term, hybrid classical/quantum
approaches employing variational methods, [5], are one way forward in accommodating the limitations
of current Noisy Intermediate-Scale Quantum (NISQ) technology for gate-based quantum computation.
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However, even these approaches have yet to demonstrate the capability to tackle optimization prob-
lems of practical importance. It is common to see quantum solution approaches applied to reduced
”toy” problems with the intention that knowledge can be gained on how the solution methods will scale
as the technology advances, giving an understanding of whether or when there might be a quantum
advantage. In certain cases, an attempt is made to decompose industrial scale problems into smaller
quantum solvable problems and tackle the larger problem as a hybrid quantum-classical composite of
smaller quantum problems handled in an iterative fashion e.g., for an analogue treatment of a logistics
problem see [6] and for digital approaches using circuit knitting (see e.g., [7], [8]). Very often, the quan-
tum solver forms a small component in the overall solution process with a focus on where a quantum
approach can yield the highest benefit (e.g., [9]).

3.1 Analogue quantum computing

In the analogue approach, a physical system of qubits represents the problem being modelled through the
Hamiltonian for the system [10], [11]. In particular, for adiabatic quantum computing, the Hamiltonian
slowly evolved from an initial form in which the ground state is known to a final form in which the ground
state corresponds to the solution to a problem. Provided the evolution is adiabatic, then this provides
a mechanism for recovering a solution state from a given initial ground state. The desired Hamiltonian
is modelled through appropriate couplings between the logical qubits in the system. These, in turn, are
mapped to the actual physical qubits through a minor embedding. The problem is usually formulated
as a quadratic unconstrained binary optimization (QUBO) and then converted to an Ising Hamiltonian
for a solution through minimization (see e.g., [12]). Alternatively, when working with Rydberg atom
arrays, the problem has to be cast as a maximum independent set problem on unit-disk graphs [13].

3.2 Digital quantum computing

In the digital (gate-based) approach, a series of discrete gate operations are performed on the initial state
of a set of qubits such that the final resulting state of the qubits encodes the solution to a given problem
in a probabilistic sense. Gate operations include both single-qubit rotations and multi-qubit entangling
operations such as CNOT gates. In the digital (discrete) form of adiabatic quantum computing, the
action of the time-dependent system Hamiltonian is broken down into a series of short-time discrete
actions through Trotterization. Each of these corresponds to alternating blocks of entangling or mixing
gates in the circuit. To obtain close to optimal solutions, a large number of alternating blocks would
be required, and hence, high-fidelity gate operations are necessary. For the current NISQ technology,
this is not possible; thus, a heuristic variational approach is adopted. The QAOA algorithm [14], [15]
utilizes just a small number of alternating blocks but introduces circuit parameters for the gates in what
is known as the circuit ansatz for the problem. Through the minimization of an objective arising from
the output state of the circuit, this hybrid quantum/classical approach can arrive at a near-optimal
solution to the problem with a relatively shallow circuit.

3.3 Quantum inspired approaches

Quantum-inspired approaches utilize aspects of quantum physics but run on classical computing, with
the goal of designing novel, e�cient algorithms. The most obvious quantum-inspired approach is that
of tensor networks, [16]. These are algorithms that compress and process information extremely e�-
ciently while maintaining accuracy and reducing the required resources needed for computations. Tensor
networks seem well-suited for tackling optimization problems, [17].

4 Case Study

The manufacture of complex products like cars and aircraft can be represented by a product breakdown
structure (PBS) for a set P of M parts. The PBS decomposes the final product into a structured
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system according to di↵erent levels like the final product, parts, sub-parts, etc., as illustrated for a
simple example in figure 1 or in tabular form in table 1. This shows hierarchically how component
parts are assembled into larger parts. Parts at the lowest level in the PBS tree are brought together
and assembled into larger parts at the next level in the tree. This is repeated for successive levels
until finally, at the highest level, the end product is assembled. The PBS is represented by a set �
of all integer tuples (r, s) corresponding to links in the PBS where r is the index for the lower level
constituent part and s is the index for the higher level resultant part. It is also useful to define the
set  of all integer tuples (r, s) corresponding to parts r and s with r < s at a certain level such
that these are sub-parts of a common part at the next level up in the PBS. Thus for the example in
figure 1 the sets � and  are given by � = {(2, 1), (3, 1), (4, 1), (5, 2), (6, 2), (7, 2), (8, 3), (9, 4), (10, 4)}
and  = {(2, 3), (2, 4), (3, 4), (5, 6), (5, 7), (6, 7), (9, 10)}.

Figure 1: Example product breakdown structure for parts Pa, a = 1, 2, ...10 (upper) with illustration
of possible parts for a door assembly (lower).

Di↵erent parts of the PBS are produced or assembled at di↵erent locations from a set S of N sites
and need to be transported to di↵erent sites for further assembly into larger parts. In general, this can
be described by assigning each part from the set of M parts to one site from the set of N sites through
a map between the indices p of the parts and s of the sites:

f : p ! s, f(a) 2 {1, 2, . . . N} 8a 2 {1, 2, . . .M}.

It is assumed for simplicity that all sites can manufacture/assemble any of the parts. Thus, there are
NM possible ways of assigning parts to sites, though some of these will violate the constraints discussed
below. A simple example of such an assignment for the PBS in figure 1 is given in table 2. Figure 2
shows the corresponding geographical locations of the sites in this simple example and the transport of
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P1 P2 P3 P4
P2 X
P3 X
P4 X
P5 X
P6 X
P7 X
P8 X
P9 X
P10 X

Table 1: Tabular representation of PBS; each row is a di↵erent sub-part, each column is a di↵erent
assembled part and X indicates the subpart contributes to the assembled part.

Figure 2: Example of assignment of 10 parts to 7 sites for PBS in figure 1

parts between the sites. For each part, Pa 2 P , and for each pair of sites Si and Sj 2 S, there is a cost
caij in mass of carbon-dioxide for transporting the part, Pa, between the sites Si and Sj . There are a
total of MN(N � 1)/2 such possible travel costs assuming the direction of travel does not change the
cost (caij = caji 8a, i, j) and departure site must, of course, be di↵erent from destination site which can
be imposed by setting very high transport cost if they are chosen the same (caii = 1030 8a, i, j). The
objective, therefore is to minimise the total cost over the assignment of parts to sites, i.e., we seek the
minimum total logistical cost in carbon dioxide given by:

Cmin = min
f

X

(r,s)2�

crf(r)f(s)

This problem can be formulated in terms of binary variables xrsij corresponding to the assignment
of origin site i and destination site j for parts r and s with (r, s) 2 �. This would be the formulation
for the integer linear programming technique described earlier. Alternatively, it can be formulated in
terms of binary variables xri corresponding to the assignment of site i for part r in the PBS. The two
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S1 S2 S3 S4 S5 S6 S7
P1 X
P2 X
P3 X
P4 X
P5 X
P6 X
P7 X
P8 X
P9 X
P10 X

Table 2: Assignment of parts to sites for example in figure 2

alternative sets of variables are related through xrsij = xrixsj . In what follows, a formulation based
on the latter choice is outlined, as this leads naturally to the QUBO formulation frequently used in
quantum computing.

In terms of the site allocation variables, the objective function can be written as

C(x) =
X

(r,s)2�

crijxrixsj

This is subject to the following explicit constraints on the binary variables:
(1) One and only one assignment of the site per part:

X

i

xri = 1 8r

(2) Origin and destination for each transport must be di↵erent:

X

(r,s)2�

X

i

xrixsi = 0

(3) The origins of 2 sub-parts of a common part must be di↵erent:

X

(r,s)2 

X

i

xrixsi = 0

This combination of objective and constraints can be formulated as a quadratic unconstrained binary
optimization (QUBO) through the addition of penalty terms to the objective with appropriate positive
values for the coe�cients �1, �2 and �3 in

Q = C + �1C1 + �2C2 + �3C3
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with
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X
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Minimisation of the objective Q will result in an optimal solution to the logistics problem. This
particular formulation or any other valid formulation may be used by participants in the quantum
computing challenge for this problem.

5 Submission Guidelines and Key Performance Metrics

This section provides guidance to participants for this specific problem statement. We also emphasize
to follow the general submission guidelines provided on the challenge website. The followings steps are
suggested to demonstrate the solution capability with respect to the logistics optimization problem.

• Step 1: Minimum transport cost: Determine the assignment of sites to parts that minimize
the transport cost for the PBS in figure 1 given the individual transport costs between sites
provided in table 3. This provides a check on the method.

• Step 2: More sites/parts/levels: Increase the number of sites, the number of parts (doubling
in steps) and/or the number of levels (increasing linearly up to a minimum of 5) for the PBS and
find the optimal solution.

• Step 3: Additional constraints: For any of the previous cases now require that each part
should now be manufactured or assembled at two sites and determine the minimum cost.

Following these steps, it should be possible to:

• Provide an assessment of how the performance would develop as N , M , and the complexity of the
PBS are varied. Provide a statement on the number of qubits required for a certain complexity
level.

• Determine the maximum feasible values of N , M and PBS complexity with current hardware?

The following assessment criteria will be considered to evaluate the submissions:

• Number of problem steps successfully completed.

• Algorithmic performance (solution quality, scaling, run-time).

• Clarity and reproducibility of approach and results.
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6 Appendix

The table below lists the emission costs in arbitrary units for transporting parts between pairs of sites.
These costs appear in the objective function. A csv file with the data in the table along with a python
script for generating the data will be provided. The script can be used to generate new data for a PBS
with an increased number of sites, parts, and levels.
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a i j caij a i j caij a i j caij a i j caij a i j caij
2 1 2 1.64 4 1 2 8.06 6 1 2 7.31 8 1 2 2.73 10 1 2 4.9
2 1 3 1.05 4 1 3 5.14 6 1 3 4.66 8 1 3 1.74 10 1 3 3.12
2 1 4 1.09 4 1 4 5.35 6 1 4 4.85 8 1 4 1.81 10 1 4 3.25
2 1 5 1.43 4 1 5 7.03 6 1 5 6.38 8 1 5 2.39 10 1 5 4.27
2 1 6 0.91 4 1 6 4.47 6 1 6 4.06 8 1 6 1.52 10 1 6 2.72
2 1 7 1.7 4 1 7 8.32 6 1 7 7.55 8 1 7 2.82 10 1 7 5.05
2 2 3 0.59 4 2 3 2.88 6 2 3 2.61 8 2 3 0.98 10 2 3 1.75
2 2 4 0.37 4 2 4 1.8 6 2 4 1.63 8 2 4 0.61 10 2 4 1.09
2 2 5 1.12 4 2 5 5.49 6 2 5 4.98 8 2 5 1.86 10 2 5 3.34
2 2 6 0.24 4 2 6 1.18 6 2 6 1.07 8 2 6 0.4 10 2 6 0.72
2 2 7 1.79 4 2 7 8.76 6 2 7 7.95 8 2 7 2.97 10 2 7 5.32
2 3 4 0.93 4 3 4 4.58 6 3 4 4.15 8 3 4 1.55 10 3 4 2.78
2 3 5 1.02 4 3 5 4.98 6 3 5 4.52 8 3 5 1.69 10 3 5 3.02
2 3 6 1.35 4 3 6 6.62 6 3 6 6.01 8 3 6 2.25 10 3 6 4.02
2 3 7 1.65 4 3 7 8.07 6 3 7 7.32 8 3 7 2.74 10 3 7 4.9
2 4 5 1.65 4 4 5 8.12 6 4 5 7.36 8 4 5 2.75 10 4 5 4.93
2 4 6 0.19 4 4 6 0.94 6 4 6 0.85 8 4 6 0.32 10 4 6 0.57
2 4 7 1.52 4 4 7 7.45 6 4 7 6.76 8 4 7 2.53 10 4 7 4.52
2 5 6 1.04 4 5 6 5.1 6 5 6 4.63 8 5 6 1.73 10 5 6 3.1
2 5 7 0.7 4 5 7 3.41 6 5 7 3.1 8 5 7 1.16 10 5 7 2.07
2 6 7 1.57 4 6 7 7.68 6 6 7 6.97 8 6 7 2.61 10 6 7 4.67
3 1 2 5.56 5 1 2 7.66 7 1 2 1.0 9 1 2 1.49
3 1 3 3.54 5 1 3 4.88 7 1 3 0.64 9 1 3 0.95
3 1 4 3.68 5 1 4 5.08 7 1 4 0.66 9 1 4 0.99
3 1 5 4.85 5 1 5 6.68 7 1 5 0.87 9 1 5 1.3
3 1 6 3.08 5 1 6 4.25 7 1 6 0.56 9 1 6 0.83
3 1 7 5.73 5 1 7 7.9 7 1 7 1.03 9 1 7 1.54
3 2 3 1.98 5 2 3 2.73 7 2 3 0.36 9 2 3 0.53
3 2 4 1.24 5 2 4 1.71 7 2 4 0.22 9 2 4 0.33
3 2 5 3.79 5 2 5 5.22 7 2 5 0.68 9 2 5 1.02
3 2 6 0.82 5 2 6 1.12 7 2 6 0.15 9 2 6 0.22
3 2 7 6.04 5 2 7 8.32 7 2 7 1.09 9 2 7 1.62
3 3 4 3.15 5 3 4 4.35 7 3 4 0.57 9 3 4 0.85
3 3 5 3.43 5 3 5 4.73 7 3 5 0.62 9 3 5 0.92
3 3 6 4.56 5 3 6 6.29 7 3 6 0.82 9 3 6 1.23
3 3 7 5.56 5 3 7 7.66 7 3 7 1.0 9 3 7 1.5
3 4 5 5.59 5 4 5 7.71 7 4 5 1.01 9 4 5 1.5
3 4 6 0.64 5 4 6 0.89 7 4 6 0.12 9 4 6 0.17
3 4 7 5.13 5 4 7 7.07 7 4 7 0.93 9 4 7 1.38
3 5 6 3.51 5 5 6 4.84 7 5 6 0.63 9 5 6 0.95
3 5 7 2.35 5 5 7 3.24 7 5 7 0.42 9 5 7 0.63
3 6 7 5.3 5 6 7 7.3 7 6 7 0.96 9 6 7 1.42

Table 3: Travel cost in mass of carbon-dioxide, caij for transporting part Pa from site Si to site Sj
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